
Proxy application for Graph
Community Detection or Clustering

Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Nathan Tallent

Pacific Northwest National Laboratory, Richland, WA

2022 IndySCC competition webinar
10/3/2022

4

Graph Clustering or Community Detection

Amarna letters, c. 1360-32 BC

Zachary’s Karate Club, c. 1970 AD

• Problem: Given G(V,E,w), identify tightly
knit groups that strongly correlate to one
another within their group, and sparsely
so, outside.

• Output: A partitioning of V into
k mutually disjoint clusters
P = {C1, C2,… Ck} such that: … ?

• Modularity (Newman, 2004) is a
metric for assessing quality of P

Fraction of
intra-cluster edges

Equivalent fraction in
a random graph

Notation Definition

C(i) Cluster containing vertex i

eiàC(i) Number of edges from i to vertices in C(i)

aC Sum of the degree of all vertices in cluster C

Sum of all edge-
weights à m

5

Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration:
• For every vertex i Î V:

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ

4. If (DQ>0) { Set C(i) = Cmax }

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1

6

Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration:
• For every vertex i Î V:

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for

moving i into each of i’s neighboring
communities

3. Let Cmax : neighboring community with
largest DQ

4. If (DQ>0) { Set C(i) = Cmax }

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain

5 4

3

2

1

Several parallelization challenges appear due to
relaxed synchronization:
• Affects global modularity and convergence
• Potential load imbalance as vertices enter and

leave (remote) communities

7

Distributed Clustering: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.

8

Observations from Vite

For a number of real world graphs, the first phase of Louvain method
does most of the work (little difference between first and final phase)

1. HPCToolkit profiling shows over 60% of
time is spent in managing and
communicating vertex-community
information

2. About 40% is spent on global
communication (MPI_Allreduce) for
computing modularity

First phase execution time Final execution time

9

Proxy Application driven Codesign
Coordinated design of applications, methods and architectures

• Applications are too complicated and rigid to be used as an analysis tool

• Proxy applications are representative of workloads that capture
compute/throughput patterns in existing or prospective applications

• Quantify bottlenecks in hardware and software – influence design of future systems

• Expose trade-offs (e.g., memory and computation)

• Sandbox to design and expand applications on future systems

• Enable systematic profiling and analysis

• Find limitations of underlying programming models and runtimes

• Caters to a wide variety of researchers, vendors, tools/runtime/compiler developers, etc.

10

miniVite (/’vi:te/)

• Implements a single phase of Louvain method
(without rebuilding the graph)
§ Similar computation/communication patterns to the

parent application

• Capable of generating synthetic Random
Geometric Graphs (RGG) in parallel (needs
random numbers)
§ Can also add random edges across processes

• Can also use real world graphs as input (must
convert to a binary format first)

• Parts of code has multiple communication options
(can be selected at compile time) – Sendrecv, NB
Isend/Irecv (default), MPI RMA and Collectives

• About 3K LoC

11

Why clustering?
• Computation: Performs some computation

(modularity), whereas other graph
workloads may have 0 FLOPS

• Communication intensive: In every
iteration, as a vertex migrates, {size,
degree} of communities change and ghost
communities have to exchange information
accordingly

• Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

• Dynamic: Process neighborhood changes
in every phase, as graph gets rebuilt

Louvain method on 256 PEs,
Friendster (3.6B edges)

Louvain method on 1K PEs,
Friendster (3.6B edges)

1/2-approx matching on 1K PEs,
Friendster (3.6B edges)

Graph500 BFS on 1K PEs,
Scale 27 (2.14B edges)

Communication heat maps

12

In-memory Random
Geometric Graph
generation

• Random Geometric Graphs: Constructed
by randomly placing N nodes within a unit
square – only add an edge between two
vertices if their distance is within a range d
§ RGG is known to demonstrate good

community structure (meaningful)
• We distribute equal number of vertices

across processes, each process may have
(cross) edges with its up and/or down
neighbors

• Option to add random number of (cross)
edges across processes that are farther
apart

p=
1,

 d
eg

=6
, m

od
=0

.7
61

p=
8,

 d
eg

=6
, m

od
=0

.7
84

p=
2,

 d
eg

=6
, m

od
=0

.7
49

p=
4,

 d
eg

=6
, m

od
=0

.7
54

p = 8

p = 1 p = 2

p = 4

1/p > d

13

Communication characteristics

No dark spots, reasonable communication volume per process

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as well)

BFSClustering

16

Impact of communication models

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 3.6B edges) on 1024/2048 processes.

With increasing number of processes, dissimilar number of
iterations across versions affect execution time

10-2
10-1
100
101
102
103
104

FAU
UIUC

MIT
Peking

Tsinghua

UCSD
TexasA&M

ShanghaiTech

TACC
SUSTech

GATech

Wake Forest

Warsaw

SJTU
Clemson

Northeastern

NCState

ETHZ
NTU

M
O

D
S

(m
od

ul
ar

ity
*s

)

Task1
Task2

Task3
Task4

Task5
Task6

17

Related activities

• Used by vendors and researchers to assess
and study performance of irregular workloads

• Preliminary checkpoint/restart
§ Supports storing/loading graph via LLNL metall

allocator, negligible performance difference

• Checking suitability of MODS figure-of-merit
§ Assessed mystery application results in VSCC’20

• 30-50% difference at scale across platforms!

Mystery app
winner and
runner-up!

*Iwabuchi K, Ghosh S, Pearce R, Halappanavar M, Gokhale M. miniVite+ Metall: A Case Study
of Accelerating Graph Analytics Using Persistent Memory Allocator.

On Cori, data is
staged on Lustre

On Summit, data is
staged on SSD

https://github.com/Exa-Graph/miniVite/tree/metallds2

102

103

104

128(8) 256(16) 512(32) 1024(64)

Ex
ec

ut
io

n
tim

e
(in

 s
ec

s.
)

Processes(Nodes)

com-Friendster (|E|=3.6B)
moliere2016 (|E|=6.6B)

NERSC Cori (OMP=4)

102

103

104

48(8) 96(16) 192(32) 384(64)

Ex
ec

ut
io

n
tim

e
(in

 s
ec

s.
)

Processes(Nodes)

OLCF Summit (OMP=7)

102

103

104

128(8) 256(16) 512(32) 1024(64)

Ex
ec

ut
io

n
tim

e
(in

 s
ec

s.
)

Processes(Nodes)

GW4 Isambard (OMP=4)

18

Concluding remarks

•miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

• Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

• Code released as part of ECP Proxy Apps suite
https://proxyapps.exascaleproject.org/app/minivite

git clone https://github.com/ECP-ExaGraph/miniVite

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A graph analytics
benchmarking tool for massively parallel systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.

Thank you

19

sayan.ghosh@pnnl.gov

mailto:sayan.ghosh@pnnl.gov

