Pacific
Northwest S

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

= =CP

Proxy application for Graph
Community Detection or Clustering

Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Nathan Tallent

Pacific Northwest National Laboratory, Richland, WA

2022 IndySCC competition webinar
10/3/2022




o

Pacific

Northwest  (Graph Clustering or Community Detection

NATIONAL LABORATORY

Sister of

« Problem: Given G(V,E, w), identify tightly I ' — =
knit groups that strongly correlate to one i g gy el 1,177
another within their group, and sparsely ‘ W s nramed .t °P
so, outside. PG\ AT N “COLIAPSED |

» Output: A partitioning of V into N ara e
k mutually disjoint clusters N .'
P={C, C,... CJ suchthat: ... ? ' H

) Mod.ularlty (Ne"".ma”’ 20.04) 'S d Amarna letters, c. 1360-32 BC
metric for assessing quality of P

' N
Notation Definition | .
C(i) Cluster containing vertex i .::ifi':tt;:f_'f;---».,__ N
o
ei=>C() Number of edges from i to vertices in C(/)
ac Sum of the degree of all vertices in cluster C * - <7 TN
1 ac ac N
< 2m “ = CG) Z ( 2m  2m ) v N\
Sum of all edge- vieV veer ’
weights > m Fraction of Equivalent fraction in Zachary s Karate Club, c. 1970 AD

intra-cluster edges a random graph



o

Pacific :
Northwest | ouvain method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={1})
Multi-phase multi-iterative heuristic
Within each iteration:
* For every vertex i € V.
1. Let C(i) : current community of i
Upon no further 2. Compute modularity gain (4Q) for
modularity gain @ moving i_into each of /’'s neighboring
communities
5 4 3. Let C,,., : neighboring community with
Next 2 largest AQ
phase 4. If (AQ>0) {Set C(i) =C,,.x}




o

Pacifi .

Northwest  |_ouvain method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Several parallelization challenges appear due to
é relaxed synchronization:
» Affects global modularity and convergence
* Potential load imbalance as vertices enter and
leave (remote) communities y of i

Upon no further . © 2. Compute modularity gain (4AQ) for

modularity gain @ moving / into each of /'s neighboring
y communities

5 4 3. Let C,,., : neighboring community with
Next 2 largest AQ

phase 1 4. 1f (4Q>0) {Set C(i) = C,,ax }

Iristic




o

Pacific

Northwest  Distributed Clustering: Vite

V2A U1A VIR
64 : : 1  —— 64 : 1 1 : : 256 1 T 1 T T 128

32 | 128 |

..............................................................................................................................

64 ||

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

16 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

32 -

Execution time (in secs)
Execution time (in secs)

16 |

Execution time (in secs)

Execution time (in secs)

[ [P7 (A |

96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536
Processes Processes Processes Processes

Fig. 7. Scalability of protein k-mer graphs.

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

32

baseline C——
tscale
ot EEEEm

et2

etcl
etc2 Zzzza

16 - HO b

Scale 21 Scale 22 Scale 23 Scale 24
64 ............................................... 128 L
32

64 i 1 1 T T 128 i 1 1 T 1 256 i
| - i
: E | 5 i | i 3 i | ‘
: @ a s ! Ul | ! v YN £
Y VIR VI VI VL T M Y
8 s 1 e ) o _tw 16 ol 3 |-E:7al—ﬂ‘:1~l7| 16 # :‘ 32 el ¢

96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536
Processes Processes Processes Processes

64

Execution time (in secs)
Execution time (in secs)
Execution time (in secs)
Execution time (in secs)

OO )

S SN
ANARARRNRNRRNRRY
1
ESSSSSRRY |
H

SN ASSN

Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.




o

racific  Observations from Vite | -
NATIONAL LABORATORY First phase execution time Final execution time
. First phase Complete execution
Graphs #Vertices | #Edges Iterations | Modularity Time || Phases | Iterations | Modularity Time ||
friendster 65.6M 1.8B 143 0.619 | 565.201 3 440 0.624 | 567.173
1t-2004 41.3M 1.15B 14 0.394 45.064 4 91 0.973 45.849
nlpkkt240 279M | 401.2M 3 0.143 3.57 5 832 0.939 21.084
sk-2005 50.6M 1.9B 11 0.314 71.562 4 83 0.971 72.94
orkut 3M | 117.1M 89 0.643 59.5 3 281 0.658 59.64
sinaweibo 58.6M | 261.3M 3 0.198 | 270.254 4 108 0.482 | 281.216
twitter-2010 21.2M 265M 3 0.028 | 209.385 4 184 0.478 | 386.483
uk2007 105.8M 3.3B 9 0431 35.174 6 139 0.972 37.988
web-cc12-paylvladmin 42.8M 1.2B 31 0.541 140.493 4 159 0.687 146.92
webbase-2001 118M 1B 14 0.458 14.702 7 239 0.983 24.455
For a number of real world graphs, the first phase of Louvain method

does most of the work (little difference between first and final phase)

- B main

loop at main.cpp: 212

-1 B 230: distLouvainMethod(int, int, DistGraph const&, std::vector<long, std::allocator<long> >&, double, double)

loop at distLouvainMethodNew.cpp: 47

6.40e+11 100.0
6.34e+1l 99.0%
6.29e+11 98.2%

6.24e+1l 97.5%

+ B 88: [I] _INTERNAL 24 _distLouvainMethodNew_cpp_2c85}7cd::distComputeModularity(Graph const&, std::vector
+ B 58: _INTERNAL 24 _distLouvainMethodNew_cpp_2c85374d::filRemoteCommunities(DistGraph const&, int, int, stc

+ B 68: __kmpc_fork_call

+ B 125: INTERNAL 24_distLouvainMethodNew_cpp_2c853 ] cd::updateRemoteCommunities (DistGraph consté&, std:

2.67e+1l 41.6%
2.16e+1l 33.7%
1.38e+ll 21.6%

3.30e+09 0.5%

-

+ B 106: __kmpc_fork_call

+ B 46: INTERNAL_24_distLouvainMethodNew_cpp_2c8537cd::exchangeVertexReqs(DistGraph const&, int, int)
+ B 138: [I] std::unordered_map<long, long, std::hash<long>, std::equal_to<long>, std::allocator<std::pair<long cons

+ B 34 INTERNAL_24 _distLouvainMethodNew_cpp_2c8537cd::distinitLouvain(DistGraph const&, std::vector<long, std

+ B 245: distbuildNextLevelGraph(int, int, DistGraph*&, std::vector<long, std::allocator<long> >&)

+ B 145: loadDistGraphMPIIO(int, int, DistGraph*&, std::string&)
+ B 365: MPI Finalize

5.62e+07 0.0%
3.84e+09 0.6%
2.63e+08 0.0%
2.46e+08 0.0%
5.06e+09 0.8%
6.11e+09 1.0%

2.64e+08 0.0%

HPCToolkit profiling shows over 60% of
time is spent in managing and
communicating vertex-community
information

About 40% is spent on global
communication (MPI_Allreduce) for
computing modularity




o

Bacific Proxy Application driven Codesign
Northwest  Coordinated design of applications, methods and architectures

 Applications are too complicated and rigid to be used as an analysis tool

* Proxy applications are representative of workloads that capture
compute/throughput patterns in existing or prospective applications

. Quantify bottlenecks in hardware and software — influence design of future systems
. Expose trade-offs (e.g., memory and computation)

. Sandbox to design and expand applications on future systems

. Enable systematic profiling and analysis

. Find limitations of underlying programming models and runtimes

. Caters to a wide variety of researchers, vendors, tools/runtime/compiler developers, etc.



% C++11

Pacific . \/: N
Northwest m|n|VIte (/ Vl.te/)
MPI Externals Distributed CSR
RGG (R;'EdGom representatlon
« Implements a single phase of Louvain method generator| | numbers) | | ™ Algorithms
(without rebuilding the graph) Binary || core ||| |single phase
= Similar computation/communication patterns to the
parent application miniVite
« Capable of generating synthetic Random MPI
Geometric Graphs (RGG) in parallel (needs P T— =—
random numbers) ECP Proxy Applications
» Can also add random edges across processes
« Can also use real world graphs as input (must
COnvert tO a blnary format fl rSt) The online collection for exascale applications
* Parts of code has multiple communication options e
(can be selected at compile time) — Sendrecv, NB
Isend/Irecv (default), MPI RMA and Collectives
° AbOUt 3K LOC Exascale Proxy Applications ’:\

EEEEEEEEEEEEEEEEEEEEEEEE



o

Pacific

Northwest  \/\/hy clustering”?

TOTAL VOLUME BYTES TOTAL VOLUME BYTES
All Paths All Paths

Computation: Performs some computation
(modularity), whereas other graph
workloads may have 0 FLOPS

Communication intensive: In every 3l
iteration, as a vertex migrates, {size, Louvain method on 256 PEs, Louvain method on 1K PEs,
degree} of communities Change and ghost Friendster (3.6B edges) Friendster (3.6B edges)
communities have to exchange information
accordingly

Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

DVnamiC: Process neighborhood Changes 1/2-approx matching on 1K PEs, Graph500 BFS on 1K PEs,

In every phase, as graph gets rebuilt Friendster (3.6B edges) Scale 27 (2.14B edges)

Communication heat maps



~ In-memory Random
5. Geometric Graph

Northwest generation

 Random Geometric Graphs: Constructed
by randomly placing N nodes within a unit
square — only add an edge between two
vertices if their distance is within a range d

* RGG is known to demonstrate good
community structure (meaningful)

» \WWe distribute equal number of vertices
across processes, each process may have
(cross) edges with its up and/or down
neighbors

» Option to add random number of (cross)
edges across processes that are farther
apart

=6, mod=0.761

1, deg

4, deg=6, mod=0.754 p

p=

1/p
{1/p,1}

{2/p,1}

\ Ay
{0,3/p} -
\ \
N\
\
{4/‘ 1}
P,
Ay

2, deg=6, mod=0.749

0.784 p

6, mod=

8, deg

p=



o

Pacific

Northwest  Communication characteristics

D S NUMBER OF CALLS
MIN MESSAGE BYTES MIN MESSAGE BYTES ' : '
! I
(a) MPI calls — . (b) MPI calls — Graph500
I | miniVite. BES.
5 MEAN '-'L‘.':,-!«',-l BYTES MEAN MESSAGE BYTES

(a) Basic RGG 1input, black (b) RGG input with 20%
spot means zero exchange.  extra edges.

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as weII) (c) Mean message sizes — |, (d) Mean message sizes —
miniVite. Graph500 BFS.
Clustering BFS

No dark spots, reasonable communication volume per process




o

Pacific

Nrtwest  [Mpact of communication models

AAAAAAAAAAAAAAAAAA

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 3.6B edges) on 1024/2048 processes.

Versions 1024 processes 2048 processes

Itrs Time Q | Itrs Time Q
NBSR 111 | 745.80 | 0.6155 ||127]| || 498.89 [ 0.6177
COLL 109 | 752.41 | 0.6159 |[[141] | 554.98 | 0.6204
SR 111 | 783.94 | 0.6157 ||103]| || 423.43 || 0.6191
RMA 109 | 78247 | 0.6162 ||111]|]|| 589.47 | 0.6190

* *

With increasing number of processes, dissimilar number of
iterations across versions affect execution time




o

racific . Related activities

NATIONAL LABORATORY ( ) Comp Node
Application DRAM
. J Page Cache _ tMpTs

A A :,5:::::::::": 3

Used by vendors and researchers to assess —* ]{ *— 1 5| oncor, datais
Metall

Heap lDirectly |qgng  Staged on Lustre

and study performance of irregular workloads  Atesator | aocetor |
! 1 ﬁ C Nod

Preliminary checkpoint/restart Main Memory

(DRAM)
= Supports storing/loading graph via LLNL metall
allocator, negligible performance difference |
Mgrenrglrsje(glt\/l) App data (files) staged on SSD

Checking suitability of MODS figure-of-merit } J

*lwabuchi K, Ghosh S, Pearce R, Halappanavar M, Gokhale M. miniVite+ Metall: A Case Study

" Assessed myStery appllcatlon resu ItS in VSCC,ZO of Accelerating Graph Analytics Using Persistent Memory Allocator.

https://github.com/Exa-Graph/miniVite/tree/metallds2

30-50% difference at scale across platforms! Taski —— Tasks —%— Tasks —-

Taske —?& Task4 ——— Task6
}

On Summit, data is

1 Staging

4
10
. B . ~ . R I
) NERSC Cori (OMP=4) ) OLCF Summit (OMP=7) ) GW4 Isambard (OMP=4) 7 g0 7\& I A K A i
i) emmbmlEmg e | i T o, el YT XY
moliere =0.
s [ DA D A
~ ~ b ~ (@] yaan I
E £ = ¢ w 107 | ¥ LR s g™ o8 N
5 S &\\\\\s S T ) -‘,%flﬁkﬁ =
: \& — | < \ < — C§) 10 1
2 2 D 2 -2 . |
492 492 W42 10 T OS
128(8)  256(16)  512(32)  1024(64) 48(8) 96(16) 192(32)  384(64)  128(8) 256(16)  512(32)  1024(64 ’%Cf//(/@/,{% /1\9~Oogq}@é&’%rgogq%zfu%@%jfo?\g@
Processes(Nodes) Processes(Nodes) Processes(Nodes) Mystery ap% o) 4%?6@?/) /}QO )éozo é@xgeék 002@$§®e
- L1227, i) S
winner and < s Sy 2

runner-up!



o

Pacific

Northwest  Concluding remarks

* miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

» Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

» Code released as part of ECP Proxy Apps suite
https://proxyapps.exascaleproject.org/app/minivite

git clone https://github.com/ECP-ExaGraph/miniVite

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A graph analytics
benchmarking tool for massively parallel systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.



Pacific
Northwest

NATIONAL LABORATORY

sayan.ghosh@pnnl.gov

Thank you

Possible options (can be combined):

1. -f <bin-file> : Specify input binary file after this argument.

2. -b : Only valid for real-world inputs. Attempts to distribute approximately
equal number of edges among processes. Irregular number of vertices
owned by a particular process. Increases the distributed graph creation
time due to serial overheads, but may improve overall execution time.

3. -n <vertices> : Only valid for synthetically generated inputs. Pass total number of
vertices of the generated graph.

4, -1 : Use distributed LCG for randomly choosing edges. If this option

is not used, we will use C++ random number generator (using
std::default_random_engine).

5. -p <percent> : Only valid for synthetically generated inputs. Specify percent of overall
edges to be randomly generated between processes.

6. -t <threshold> : Specify threshold quantity (default: 1.0E-06) used to determine the
exit criteria in an iteration of Louvain method.

7. -w : Only valid for synthetically generated inputs. Use Euclidean distance as edge weight.
If this option is not used, edge weights are considered as 1.0. Generate
edge weight uniformly between (@,1) if Euclidean distance is not available.

8. -r <nranks> : This is used to control the number of aggregators in MPI I/0 and is

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarria-Miranda D,
Khan A, Gebremedhin A. Distributed louvain algorithm for graph community
detection. In2018 IEEE international parallel and distributed processing
symposium (IPDPS) 2018 May 21 (pp. 885-895). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A
graph analytics benchmarking tool for massively parallel systems. In 2018
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. Scalable
distributed memory community detection using vite. In2018 IEEE High Performance
extreme Computing Conference (HPEC) 2018 Sep 25 (pp. 1-7). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanarainan A. Scaling and quality of
modularity optimization methods for graph clustering. In2019 IEEE High
Performance Extreme Computing Conference (HPEC) 2019 Sep 24 (pp. 1-6). IEEE.

Gawande N, Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A. Towards scaling
community detection on distributed—memory heterogeneous systems. Parallel
Computing. 2022 Jul 1;111:102898.


mailto:sayan.ghosh@pnnl.gov

