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« Problem: Given G(V,E, w), identify tightly I ' — =
knit groups that strongly correlate to one i g gy el 1,177
another within their group, and sparsely ‘ W s nramed .t °P
so, outside. PG\ AT N “COLIAPSED |

» Output: A partitioning of V into N ara e
k mutually disjoint clusters N .'
P={C, C,... CJ suchthat: ... ? ' H

) Mod.ularlty (Ne"".ma”’ 20.04) 'S d Amarna letters, c. 1360-32 BC
metric for assessing quality of P

' N
Notation Definition | .
C(i) Cluster containing vertex i .::ifi':tt;:f_'f;---».,__ N
o
ei=>C() Number of edges from i to vertices in C(/)
ac Sum of the degree of all vertices in cluster C * - <7 TN
1 ac ac N
< 2m “ = CG) Z ( 2m  2m ) v N\
Sum of all edge- vieV veer ’
weights > m Fraction of Equivalent fraction in Zachary s Karate Club, c. 1970 AD

intra-cluster edges a random graph
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Northwest | ouvain method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={1})
Multi-phase multi-iterative heuristic
Within each iteration:
* For every vertex i € V.
1. Let C(i) : current community of i
Upon no further 2. Compute modularity gain (4Q) for
modularity gain @ moving i_into each of /’'s neighboring
communities
5 4 3. Let C,,., : neighboring community with
Next 2 largest AQ
phase 4. If (AQ>0) {Set C(i) =C,,.x}
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Northwest  |_ouvain method (Blondel et al. 2008)
Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Several parallelization challenges appear due to
é relaxed synchronization:
» Affects global modularity and convergence
* Potential load imbalance as vertices enter and
leave (remote) communities y of i

Upon no further . © 2. Compute modularity gain (4AQ) for

modularity gain @ moving / into each of /'s neighboring
y communities

5 4 3. Let C,,., : neighboring community with
Next 2 largest AQ

phase 1 4. 1f (4Q>0) {Set C(i) = C,,ax }

Iristic
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Fig. 7. Scalability of protein k-mer graphs.

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%
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Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

However, heuristics have little impact for some inputs!
Our goal: To study the baseline version: Communication options, data structures, etc.
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NATIONAL LABORATORY First phase execution time Final execution time
. First phase Complete execution
Graphs #Vertices | #Edges Iterations | Modularity Time || Phases | Iterations | Modularity Time ||
friendster 65.6M 1.8B 143 0.619 | 565.201 3 440 0.624 | 567.173
1t-2004 41.3M 1.15B 14 0.394 45.064 4 91 0.973 45.849
nlpkkt240 279M | 401.2M 3 0.143 3.57 5 832 0.939 21.084
sk-2005 50.6M 1.9B 11 0.314 71.562 4 83 0.971 72.94
orkut 3M | 117.1M 89 0.643 59.5 3 281 0.658 59.64
sinaweibo 58.6M | 261.3M 3 0.198 | 270.254 4 108 0.482 | 281.216
twitter-2010 21.2M 265M 3 0.028 | 209.385 4 184 0.478 | 386.483
uk2007 105.8M 3.3B 9 0431 35.174 6 139 0.972 37.988
web-cc12-paylvladmin 42.8M 1.2B 31 0.541 140.493 4 159 0.687 146.92
webbase-2001 118M 1B 14 0.458 14.702 7 239 0.983 24.455
For a number of real world graphs, the first phase of Louvain method

does most of the work (little difference between first and final phase)

- B main

loop at main.cpp: 212

-1 B 230: distLouvainMethod(int, int, DistGraph const&, std::vector<long, std::allocator<long> >&, double, double)

loop at distLouvainMethodNew.cpp: 47

6.40e+11 100.0
6.34e+1l 99.0%
6.29e+11 98.2%

6.24e+1l 97.5%

+ B 88: [I] _INTERNAL 24 _distLouvainMethodNew_cpp_2c85}7cd::distComputeModularity(Graph const&, std::vector
+ B 58: _INTERNAL 24 _distLouvainMethodNew_cpp_2c85374d::filRemoteCommunities(DistGraph const&, int, int, stc

+ B 68: __kmpc_fork_call

+ B 125: INTERNAL 24_distLouvainMethodNew_cpp_2c853 ] cd::updateRemoteCommunities (DistGraph consté&, std:

2.67e+1l 41.6%
2.16e+1l 33.7%
1.38e+ll 21.6%

3.30e+09 0.5%

-

+ B 106: __kmpc_fork_call

+ B 46: INTERNAL_24_distLouvainMethodNew_cpp_2c8537cd::exchangeVertexReqs(DistGraph const&, int, int)
+ B 138: [I] std::unordered_map<long, long, std::hash<long>, std::equal_to<long>, std::allocator<std::pair<long cons

+ B 34 INTERNAL_24 _distLouvainMethodNew_cpp_2c8537cd::distinitLouvain(DistGraph const&, std::vector<long, std

+ B 245: distbuildNextLevelGraph(int, int, DistGraph*&, std::vector<long, std::allocator<long> >&)

+ B 145: loadDistGraphMPIIO(int, int, DistGraph*&, std::string&)
+ B 365: MPI Finalize

5.62e+07 0.0%
3.84e+09 0.6%
2.63e+08 0.0%
2.46e+08 0.0%
5.06e+09 0.8%
6.11e+09 1.0%

2.64e+08 0.0%

HPCToolkit profiling shows over 60% of
time is spent in managing and
communicating vertex-community
information

About 40% is spent on global
communication (MPI_Allreduce) for
computing modularity
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Northwest  Coordinated design of applications, methods and architectures

 Applications are too complicated and rigid to be used as an analysis tool

* Proxy applications are representative of workloads that capture
compute/throughput patterns in existing or prospective applications

. Quantify bottlenecks in hardware and software — influence design of future systems
. Expose trade-offs (e.g., memory and computation)

. Sandbox to design and expand applications on future systems

. Enable systematic profiling and analysis

. Find limitations of underlying programming models and runtimes

. Caters to a wide variety of researchers, vendors, tools/runtime/compiler developers, etc.
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MPI Externals Distributed CSR
RGG (R;'EdGom representatlon
« Implements a single phase of Louvain method generator| | numbers) | | ™ Algorithms
(without rebuilding the graph) Binary || core ||| |single phase
= Similar computation/communication patterns to the
parent application miniVite
« Capable of generating synthetic Random MPI
Geometric Graphs (RGG) in parallel (needs P T— =—
random numbers) ECP Proxy Applications
» Can also add random edges across processes
« Can also use real world graphs as input (must
COnvert tO a blnary format fl rSt) The online collection for exascale applications
* Parts of code has multiple communication options e
(can be selected at compile time) — Sendrecv, NB
Isend/Irecv (default), MPI RMA and Collectives
° AbOUt 3K LOC Exascale Proxy Applications ’:\

EEEEEEEEEEEEEEEEEEEEEEEE
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TOTAL VOLUME BYTES TOTAL VOLUME BYTES
All Paths All Paths

Computation: Performs some computation
(modularity), whereas other graph
workloads may have 0 FLOPS

Communication intensive: In every 3l
iteration, as a vertex migrates, {size, Louvain method on 256 PEs, Louvain method on 1K PEs,
degree} of communities Change and ghost Friendster (3.6B edges) Friendster (3.6B edges)
communities have to exchange information
accordingly

Nondeterministic: Execution time is
sensitive to structure and sizes of input
(#iterations, #clusters, relative sizes)

DVnamiC: Process neighborhood Changes 1/2-approx matching on 1K PEs, Graph500 BFS on 1K PEs,

In every phase, as graph gets rebuilt Friendster (3.6B edges) Scale 27 (2.14B edges)

Communication heat maps



~ In-memory Random
5. Geometric Graph

Northwest generation

 Random Geometric Graphs: Constructed
by randomly placing N nodes within a unit
square — only add an edge between two
vertices if their distance is within a range d

* RGG is known to demonstrate good
community structure (meaningful)

» \WWe distribute equal number of vertices
across processes, each process may have
(cross) edges with its up and/or down
neighbors

» Option to add random number of (cross)
edges across processes that are farther
apart
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D S NUMBER OF CALLS
MIN MESSAGE BYTES MIN MESSAGE BYTES ' : '
! I
(a) MPI calls — . (b) MPI calls — Graph500
I | miniVite. BES.
5 MEAN '-'L‘.':,-!«',-l BYTES MEAN MESSAGE BYTES

(a) Basic RGG 1input, black (b) RGG input with 20%
spot means zero exchange.  extra edges.

Process only communicates with 2 neighbors for
basic RGG, however, communication patterns
change when extra edges are added randomly

(modularity changes as weII) (c) Mean message sizes — |, (d) Mean message sizes —
miniVite. Graph500 BFS.
Clustering BFS

No dark spots, reasonable communication volume per process
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Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 3.6B edges) on 1024/2048 processes.

Versions 1024 processes 2048 processes

Itrs Time Q | Itrs Time Q
NBSR 111 | 745.80 | 0.6155 ||127]| || 498.89 [ 0.6177
COLL 109 | 752.41 | 0.6159 |[[141] | 554.98 | 0.6204
SR 111 | 783.94 | 0.6157 ||103]| || 423.43 || 0.6191
RMA 109 | 78247 | 0.6162 ||111]|]|| 589.47 | 0.6190

* *

With increasing number of processes, dissimilar number of
iterations across versions affect execution time
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Application DRAM
. J Page Cache _ tMpTs

A A :,5:::::::::": 3

Used by vendors and researchers to assess —* ]{ *— 1 5| oncor, datais
Metall

Heap lDirectly |qgng  Staged on Lustre

and study performance of irregular workloads  Atesator | aocetor |
! 1 ﬁ C Nod

Preliminary checkpoint/restart Main Memory

(DRAM)
= Supports storing/loading graph via LLNL metall
allocator, negligible performance difference |
Mgrenrglrsje(glt\/l) App data (files) staged on SSD

Checking suitability of MODS figure-of-merit } J

*lwabuchi K, Ghosh S, Pearce R, Halappanavar M, Gokhale M. miniVite+ Metall: A Case Study

" Assessed myStery appllcatlon resu ItS in VSCC,ZO of Accelerating Graph Analytics Using Persistent Memory Allocator.

https://github.com/Exa-Graph/miniVite/tree/metallds2

30-50% difference at scale across platforms! Taski —— Tasks —%— Tasks —-

Taske —?& Task4 ——— Task6
}

On Summit, data is

1 Staging

4
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. B . ~ . R I
) NERSC Cori (OMP=4) ) OLCF Summit (OMP=7) ) GW4 Isambard (OMP=4) 7 g0 7\& I A K A i
i) emmbmlEmg e | i T o, el YT XY
moliere =0.
s [ DA D A
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: \& — | < \ < — C§) 10 1
2 2 D 2 -2 . |
492 492 W42 10 T OS
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winner and < s Sy 2

runner-up!
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* miniVite serves as a sandbox for assessing performance of
different communication primitives, quality of heuristics,
correctness, and understanding impact of different datasets

» Can generate different datasets due to in-memory graph
generator, extra options that may impact communication

» Code released as part of ECP Proxy Apps suite
https://proxyapps.exascaleproject.org/app/minivite

git clone https://github.com/ECP-ExaGraph/miniVite

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A graph analytics
benchmarking tool for massively parallel systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.
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Possible options (can be combined):

1. -f <bin-file> : Specify input binary file after this argument.

2. -b : Only valid for real-world inputs. Attempts to distribute approximately
equal number of edges among processes. Irregular number of vertices
owned by a particular process. Increases the distributed graph creation
time due to serial overheads, but may improve overall execution time.

3. -n <vertices> : Only valid for synthetically generated inputs. Pass total number of
vertices of the generated graph.

4, -1 : Use distributed LCG for randomly choosing edges. If this option

is not used, we will use C++ random number generator (using
std::default_random_engine).

5. -p <percent> : Only valid for synthetically generated inputs. Specify percent of overall
edges to be randomly generated between processes.

6. -t <threshold> : Specify threshold quantity (default: 1.0E-06) used to determine the
exit criteria in an iteration of Louvain method.

7. -w : Only valid for synthetically generated inputs. Use Euclidean distance as edge weight.
If this option is not used, edge weights are considered as 1.0. Generate
edge weight uniformly between (@,1) if Euclidean distance is not available.

8. -r <nranks> : This is used to control the number of aggregators in MPI I/0 and is

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarria-Miranda D,
Khan A, Gebremedhin A. Distributed louvain algorithm for graph community
detection. In2018 IEEE international parallel and distributed processing
symposium (IPDPS) 2018 May 21 (pp. 885-895). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A
graph analytics benchmarking tool for massively parallel systems. In 2018
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. Scalable
distributed memory community detection using vite. In2018 IEEE High Performance
extreme Computing Conference (HPEC) 2018 Sep 25 (pp. 1-7). IEEE.

Ghosh S, Halappanavar M, Tumeo A, Kalyanarainan A. Scaling and quality of
modularity optimization methods for graph clustering. In2019 IEEE High
Performance Extreme Computing Conference (HPEC) 2019 Sep 24 (pp. 1-6). IEEE.

Gawande N, Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A. Towards scaling
community detection on distributed—memory heterogeneous systems. Parallel
Computing. 2022 Jul 1;111:102898.
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