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Graph Clustering or Community Detection

Amarna letters, c. 1360-32 BC

Zachary’s Karate Club, c. 1970 AD

• Problem: Given G(V,E,w), identify tightly 
knit groups that strongly correlate to one 
another within their group, and sparsely
so, outside.

• Output: A partitioning of V into 
k mutually disjoint clusters 
P = {C1, C2,… Ck} such that: … ?

• Modularity (Newman, 2004) is a 
metric for assessing quality of P

Fraction of 
intra-cluster edges

Equivalent fraction in 
a random graph

Notation Definition

C(i) Cluster containing vertex i

eiàC(i) Number of edges from i to vertices in C(i)

aC Sum of the degree of all vertices in cluster C

Sum of all edge-
weights à m
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Louvain method (Blondel et al. 2008)

Multi-phase multi-iterative heuristic
Within each iteration: 
• For every vertex i Î V: 

1. Let C(i) : current community of i
2. Compute modularity gain (DQ) for 

moving i into each of i’s neighboring 
communities

3. Let Cmax : neighboring community with 
largest DQ

4. If (DQ>0)  { Set C(i) = Cmax }

Input: G(V,E)
Goal: Compute a partitioning of V that maximizes modularity (Q)
Init: Every vertex starts in its own community (i.e., C(i)={i})

Next
phase

Upon no further
modularity gain
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Several parallelization challenges appear due to 
relaxed synchronization:
• Affects global modularity and convergence
• Potential load imbalance as vertices enter and 

leave (remote) communities
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Distributed Clustering: Vite

We implement heuristics on top of the baseline distributed version, yielding speedups
of up to 2.5-46x (compared to baseline), modularity affects sometimes by ~8-20%

However, heuristics have little impact for some inputs! 
Our goal: To study the baseline version: Communication options, data structures, etc.
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Observations from Vite

For a number of real world graphs, the first phase of Louvain method
does most of the work (little difference between first and final phase)

1. HPCToolkit profiling shows over 60% of 
time is spent in managing and 
communicating vertex-community 
information

2. About 40% is spent on global  
communication (MPI_Allreduce) for 
computing modularity

First phase execution time Final execution time
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Proxy Application driven Codesign
Coordinated design of applications, methods and architectures

• Applications are too complicated and rigid to be used as an analysis tool

• Proxy applications are representative of workloads that capture 
compute/throughput patterns in existing or prospective applications

• Quantify bottlenecks in hardware and software – influence design of future systems

• Expose trade-offs (e.g., memory and computation)

• Sandbox to design and expand applications on future systems  

• Enable systematic profiling and analysis 

• Find limitations of underlying programming models and runtimes

• Caters to a wide variety of researchers, vendors, tools/runtime/compiler developers, etc. 
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miniVite (/’vi:te/)

• Implements a single phase of Louvain method 
(without rebuilding the graph)
§ Similar computation/communication patterns to the 

parent application

• Capable of generating synthetic Random 
Geometric Graphs (RGG) in parallel (needs 
random numbers)
§ Can also add random edges across processes

• Can also use real world graphs as input (must 
convert to a binary format first)

• Parts of code has multiple communication options 
(can be selected at compile time) – Sendrecv, NB 
Isend/Irecv (default), MPI RMA and Collectives

• About 3K LoC 
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Why clustering?
• Computation: Performs some computation 

(modularity), whereas other graph 
workloads may have 0 FLOPS

• Communication intensive: In every 
iteration, as a vertex migrates, {size, 
degree} of communities change and ghost 
communities have to exchange information 
accordingly

• Nondeterministic: Execution time is 
sensitive to structure and sizes of input 
(#iterations, #clusters, relative sizes)

• Dynamic: Process neighborhood changes 
in every phase, as graph gets rebuilt

Louvain method on 256 PEs,
Friendster (3.6B edges)

Louvain method on 1K PEs,
Friendster (3.6B edges)

1/2-approx matching on 1K PEs,
Friendster (3.6B edges)

Graph500 BFS on 1K PEs,
Scale 27 (2.14B edges)

Communication heat maps
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In-memory Random 
Geometric Graph
generation

• Random Geometric Graphs: Constructed 
by randomly placing N nodes within a unit
square – only add an edge between two 
vertices if their distance is within a range d
§ RGG is known to demonstrate good

community structure (meaningful)
• We distribute equal number of vertices 

across processes, each process may have 
(cross) edges with its up and/or down 
neighbors

• Option to add random number of (cross) 
edges across processes that are farther 
apart
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Communication characteristics

No dark spots, reasonable communication volume per process

Process only communicates with 2 neighbors for 
basic RGG, however, communication patterns 
change when extra edges are added randomly 

(modularity changes as well) 

BFSClustering
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Impact of communication models

Number of iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 3.6B edges) on 1024/2048 processes.

With increasing number of processes, dissimilar number of 
iterations across versions affect execution time



10-2
10-1
100
101
102
103
104

FAU
UIUC

MIT
Peking

Tsinghua

UCSD
TexasA&M

ShanghaiTech

TACC
SUSTech

GATech

Wake Forest

Warsaw

SJTU
Clemson

Northeastern

NCState

ETHZ
NTU

M
O

D
S 

(m
od

ul
ar

ity
*s

)

Task1
Task2

Task3
Task4

Task5
Task6

17

Related activities 

• Used by vendors and researchers to assess 
and study performance of irregular workloads

• Preliminary checkpoint/restart
§ Supports storing/loading graph via LLNL metall

allocator, negligible performance difference

• Checking suitability of MODS figure-of-merit
§ Assessed mystery application results in VSCC’20

• 30-50% difference at scale across platforms! 

Mystery app 
winner and 
runner-up!

*Iwabuchi K, Ghosh S, Pearce R, Halappanavar M, Gokhale M. miniVite+ Metall: A Case Study 
of Accelerating Graph Analytics Using Persistent Memory Allocator.

On Cori, data is
staged on Lustre

On Summit, data is
staged on SSD

https://github.com/Exa-Graph/miniVite/tree/metallds2
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Concluding remarks

•miniVite serves as a sandbox for assessing performance of 
different communication primitives, quality of heuristics, 
correctness, and understanding impact of different datasets

• Can generate different datasets due to in-memory graph 
generator, extra options that may impact communication

• Code released as part of ECP Proxy Apps suite 
https://proxyapps.exascaleproject.org/app/minivite

git clone https://github.com/ECP-ExaGraph/miniVite

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Gebremedhin AH. miniVite: A graph analytics 
benchmarking tool for massively parallel systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking 
and Simulation of High Performance Computer Systems (PMBS) 2018 Nov 12 (pp. 51-56). IEEE.



Thank you

19

sayan.ghosh@pnnl.gov

mailto:sayan.ghosh@pnnl.gov

