
miniVite
ShanghaiTechU GeekPie_ HPC

Establishing baseline performance

We use spack and NFS to setup environments and share data between compute nodes and the
head node.

How are these two input graphs different?

Orkut dataset is from a online social network, which allows users form a group that other
members can join in.

Webbase dataset has been obtained from the 2001 crawl performed by the WebBase crawler.

Orkut dataset has fewer vertices and edges compared to the webbase dataset. Orkut dataset
has high modularity, which means there are dense connections between the nodes within
modules but sparse connections between nodes in different modules(Wikipedia).

com-orkut.ungraph.bin webbase-2001.bin

Size 3.6G 31G

Modularity(miniVite output) 0.633749 0.458129

Running time Longer Shorter

Number of vertices 3072441 118142155

Number of edges 234370166 1985689782

Maximum number of edges 21807018 125244164

Average number of edges 1.17185e+07 9.92845e+07

Expected value of X^2 1.62778e+14 1.01941e+16

Variance 2.54547e+13 3.36641e+14

Standard deviation 5.04526e+06 1.83478e+07

What arguments did you choose to run miniVite

https://en.wikipedia.org/wiki/Modularity_(networks)

We use spack install minivite . The default MPI is openMPI. The default compiler is gcc-8 on
CentOS.

#!/bin/fish
touch output;
for i in (seq 1 20);
 rm host$i;
 touch host$i;
 for j in (seq 1 $i);
 echo "node-$j slots=20" >> "host$i"
 end;
 echo "webbase-$i running...";
 echo "webbase-$i running..." >> output;
 mpirun --hostfile host$i -n (math 20 * $i) miniVite -f /share/webbase-2001.bin >>
output;
 echo "ungraph-$i running...";
 echo "ungraph-$i running..." >> output;
 mpirun --hostfile host$i -n (math 20 * $i) miniVite -f /share/com-
orkut.ungraph.bin >> output;
end;

Does increasing the number of OpenMP threads help the performance?

In our case, increasing the OpenMP threads to 3 maximizes our performance. The phenomenon
may be caused by the imbalance of jobs between MPI processes. When an MPI process hits
the MPI_Barrier or MPI_Waitall, it has finished its calculation and has to wait for other MPI
processes, then it can donate its CPU time to other processes. By increasing OpenMP threads,
the MPI process which has the heaviest work load among all MPI processes can utilize as many

free CPU resources as possible. However, setting OpenMP threads too high may cause
overhead, such as context switch, which will reduce the performance.

Performing further optimizations

Compare baseline performance with the improved version

Open MPI

We use infinity band to get better performance.

OpenMPI variant: openmpi@4.1.4~atomics~cuda~cxx~cxx_exceptions~gpfs~internal-
hwloc~java~legacylaunchers~lustre~memchecker+romio+rsh~singularity+static+vt+wrapper-rpath

fabrics=ucx schedulers=non

miniVite

We have tried -DUSE_32_BIT_GRAPH , but it crashed.

terminate called after throwing an instance of 'std::length_error'
 what(): vector::_M_fill_insert

Furthermore, we have tried -DUSE_MPI_ACCUMULATE and the other two options, but the
performance is not improved (see the spack build script).

Copyright 2013-2022 Lawrence Livermore National Security, LLC and other
Spack Project Developers. See the top-level COPYRIGHT file for details.

SPDX-License-Identifier: (Apache-2.0 OR MIT)

from spack.package import *

class Minivite(MakefilePackage):
 """miniVite is a proxy application that implements a single phase of
 Louvain method in distributed memory for graph community detection.
 """

 tags = ["proxy-app", "ecp-proxy-app"]

 homepage = "https://hpc.pnl.gov/people/hala/grappolo.html"
 git = "https://github.com/Exa-Graph/miniVite.git"

 version("develop", branch="master")
 version("1.0", tag="v1.0")
 version("1.1", tag="v1.1")

 variant("openmp", default=True, description="Build with OpenMP support")
 variant("opt", default=True, description="Optimization flags")
 variant("mode",default='default',description="mode",values=
('collective','sendrecv','rma','default','rma_accu'))
 variant("omp_schedule", default=False, description="Enable OMP schedule")
 variant("use_32_bit_graph", default=False, description="Use 32bit graph")

 depends_on("mpi")

 @property
 def build_targets(self):
 targets = []
 cxxflags = ["-std=c++11 -g -DCHECK_NUM_EDGES -DPRINT_EXTRA_NEDGES"]
 ldflags = []

 if "+openmp" in self.spec:
 cxxflags.append(self.compiler.openmp_flag)
 ldflags.append(self.compiler.openmp_flag)
 if "+opt" in self.spec:
 cxxflags.append(" -O3 ")
 if self.spec.variants['mode'].value == 'collective':
 cxxflags.append("-DUSE_MPI_COLLECTIVES")
 elif self.spec.variants['mode'].value == 'sendrecv':
 cxxflags.append("-DUSE_MPI_SENDRECV")
 elif self.spec.variants['mode'].value == 'rma':
 cxxflags.append("-DUSE_MPI_RMA")

 elif self.spec.variants['mode'].value == 'rma_accu':
 cxxflags.append("-DUSE_MPI_RMA -DUSE_MPI_ACCUMULATE ")

 if "+omp_schedule" in self.spec:
 cxxflags.append("-DOMP_SCHEDULE_RUNTIME")
 if "+use_32_bit_graph" in self.spec:
 cxxflags.append("-DUSE_32_BIT_GRAPH")

 targets.append("CXXFLAGS={0}".format(" ".join(cxxflags)))
 targets.append("OPTFLAGS={0}".format(" ".join(ldflags)))
 targets.append("CXX={0}".format(self.spec["mpi"].mpicxx))

 return targets

 def install(self, spec, prefix):
 mkdirp(prefix.bin)
 if self.version >= Version("1.1"):
 install("miniVite", prefix.bin)
 elif self.version >= Version("1.0"):
 install("dspl", prefix.bin)

Final minVite variant: minivite@1.1+openmp+opt mode=rma

Run

We generate the appfile and the rankfile based on the hostfile by the python script mentioned
above. We assume that the average load of the MPI process in every NUMA is close. We want
to find the number of MPI processes on one node (which has two NUMAs) that maximize the
performance. We also find that with the USE_MPI_RMA flag open, the performance grows with
the increase of nodes, so we will use 20 nodes to find the best PPN. After some trials, we found
PPN = 14 is best for webbase-2001, 20 nodes. We generated a series of rankfiles and appfiles
from 1 node to 20 nodes.

rankfile , appfile generator

ranks = []
apps = []
rank_id = 0
PPN = 14
with open('hostfile') as h:
 data = h.read()
 data = data.strip().split('\n')

while rank_id < len(data) * PPN:
 ranks.append(f"rank {rank_id}={data[rank_id // PPN]} slot={0 if rank_id % PPN <
PPN / 2 else 1}:0-9")
 apps.append(f"-np 1 /share/run.sh {0 if rank_id % PPN < PPN / 2 else 1} {PPN}")
 rank_id += 1
with open('rankfile', 'w') as f:
 f.write('\n'.join(ranks))

with open('appfile', 'w') as f:
 f.write('\n'.join(apps))

/share/run.sh

#!/bin/bash
export OMP_PLACES="sockets"
export OMP_PROC_BIND="close"
export OMP_NUM_THREADS=3

numactl --membind=$1 miniVite -f /share/webbase-2001.bin -b -r $2

Command:

mpirun --report-bindings --mca mpi_leave_pinned 1 --hostfile hostfile --rankfile
rankfile --app appfile

Best performance: webbase-2001 23.02s, com-orkut.ungraph 49.05s

Does your set of options affect the output quality (expressed via
modularity and MODS) in any way?

We found that there may be different numbers of iterations in different runs, so the modularity
may be different.

Our modifications do not affect the output quality, because these modifications still produce the
same intermediate result, which means our modifications are deterministic. For example, we
enable the USE_MPI_RMA macro, which enables the RMA operations, although different MPI calls
are used, the result stays the same.

