
miniVite Strong Scaling

GeekPie_HPC, ShanghaiTech

Processes-per-node Threads-per-process
Before reading the source code, we use a black-box autotuning program to find
the best processes-per-node and threads-per-process. To run faster, we set the
threshold to 0.15 so that miniVite would stop after 2 iterations. The result is
shown in the following table.

PPN OMP_NUM_THREADS Clustering
20 1 100.445
20 2 102.023
18 4 108.072
20 4 108.56
18 1 108.96
19 4 111.123
14 3 112.578
17 1 113.688
13 4 114.414
12 3 132.041
14 1 133.937
11 4 135.394
13 1 144.941
10 2 146.281
12 1 157.053
11 1 178.026
10 1 189.759

After digging into the source code, we find that in every iteration, miniVite:

1. Call fillRemoteCommunities to get information about communities on
remote processes.

2. Call distExecuteLouvainIteration for every vertex.
3. Call distUpdateLocalCinfo to update the information of communities

on the local process.
4. Call updateRemoteCommunities to update the information of communities

on remote processes.

1



5. Check whether the clustering is converged.

OpenMP parallelism is used in distExecuteLouvainIteration and
distUpdateLocalCinfo. So we have to use omp atomic to update the
information of communities on local process. This may be inefficient.

For MPI parallelism, we use fillRemoteCommunities and updateRemoteCommunities
to synchronize between processes. There is no synchronization in
distExecuteLouvainIteration and distUpdateLocalCinfo.

Therefore, if we set PPN to 20 and set OMP_NUM_THREADS to 1, every
core will have 1 process to work on, and there will be no synchronization cost in
distExecuteLouvainIteration and distUpdateLocalCinfo. So miniVite will run
faster.

Because we have assigned 20 processes to each node, and each process needs to
store a complete list of nodes of the graph and a list of the edges which belong
to its communities, the program requires a large amount of memory, especially
when the node cluster size is small.

In our experiments, miniVite crashes at startup when the number of nodes is
less than 13. So we choose 13 as the startup node number.

Then we add nodes one by one until the node number reaches 20.

In conclusion, we use 20 processes per node and 1 thread per process to run
miniVite from 13 nodes to 20 nodes.

Profiling and Performance Improvements
Before we run strong-scaling experiments, we profile miniVite to find the perfor-
mance bottleneck.

We use vtune to profiling the original miniVite program.

The following figures show the performance analysis of running miniVite on
com-orkut.ungraph.bin on a single node. (Graph com-orkut.ungraph.bin
and graph com-friendster.ungraph.bin are both social network graphs, and
orkut is much smaller than friendster. So we profile it first.)

2



We can see that most CPU time was spent on std::map and std::unordered_map.

And we know that the STL implementations of the two maps are very slow, so
we replaced them with a faster implementation: robin-hood-hashing.

This change gives miniVite a huge performance boost. When using a 20-node clus-
ter to analyze the graph com-friendster.ungraph.bin, the runtime improves
from about 460 seconds to about 110 seconds.

Then we profile miniVite again with a 20-node cluster and the graph
com-friendster.ungraph.bin. The following figure shows the result:

Now we can see that most CPU time is used for cross-process synchronization of
MPI, and the efficiency has reached the ideal value.

Our modifications involve only the replacement of the data structure implemen-
tation. We did not modify the Louvain Method itself, so the correctness of the
algorithm is not affected. The Modularity before and after the modification is
also unchanged.

Arguments
OpenMPI compile arguments

openmpi@4.1.4~atomics~cuda~cxx~cxx_exceptions~gpfs~internal-hwloc~java
~legacylaunchers~lustre~memchecker+romio+rsh~singularity+static+vt+wrapper-rpath
fabrics=ucx schedulers=non

We use fabrics=ucx to enable the InfiniBand support.

MiniVite compile commands

mpic++ -std=c++17 -g -DCHECK_NUM_EDGES -DPRINT_EXTRA_NEDGES \
-march=native -ffast-math -mprefer-vector-width=256 -fopenmp -Ofast \
-c -o main.o main.cpp

mpic++ main.o -fopenmp -o miniVite

3

https://github.com/martinus/robin-hood-hashing


We have made some changes to the MiniVite code described in the Profiling
and Performance Improvements section.

We use -march=native -ffast-math -mprefer-vector-width=256 -Ofast
for efficiency.

Our running command

mpirun --hostfile ./hostfile -n 400 -map-by core --bind-to core \
miniVite -f com-friendster.ungraph.bin -b -t 0.0015

-map-by core --bind-to core binds one process to one core.

-b attempts to distribute approximately equal number of edges among processes.
So the workload of each process can be relatively close.

-t 0.0015 reduces the number of iterations without significantly affecting the
modularity.

Results
The minimum runtime we get is 110.941 seconds.

• Modularity 0.588858 remains unchanged in all experiments.
• Iterations 29 remains unchanged in all experiments.

(a) Loading (b) Clustering

Figure 1: Strong Scaling Running Time

4



(a) Number of iterations (b) Modularity (c) MODS

5


	Processes-per-node Threads-per-process
	Profiling and Performance Improvements
	Arguments
	OpenMPI compile arguments
	MiniVite compile commands
	Our running command

	Results

