
CosmicTagger 
 
CosmicTagger is an image segmentation application from high energy neutrino physics, and has 
been deployed as a benchmark application for multiple supercomputing clusters. 
 

Introduction 
 
Neutrinos are a fundamental particle (like electrons, muons and taus - but without electric 
charge) that we know exists, has mass, and not too much else.  Many state of the art physics 
experiments probe the nature of the neutrino particle, but because the particles are so weakly 
interacting physicists use large, complex and high resolution detectors to image and study 
neutrino interactions.  The application in this section is developed as a background removal 
technique important to analysis of some neutrino experiments. 
 
In high energy neutrino physics experiments such as the "Short Baseline Neutrino Detector" at 
Fermi National Accelerator Laboratory, cosmic ray particles can be so common and pervasive 
that they dominate the data readout of these detectors.  In this application, you will use a deep 
learning image segmentation technique to label individual pixels in simulated images as either 
cosmic-ray origin, neutrino-origin, or background pixels. 
 
For more information about the scientific use case of this application, see 
https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full. 
 
The dataset is composed of 3 2D-projections of a 3D space at high resolution, 2048x1280 pixels.  
The high resolution data makes for a very computationally intensive training procedure.  In this 
application, you will run CosmicTagger several ways, isolating IO, compute/scaling, and finally 
running the full application in both training and inference mode. 
 

Software requirements 
 
CosmicTagger is implemented in both tensorflow and pytorch.  For the competition, 
either framework may be used but please note that depending on your system configuration, and 
site setup, one may perform better than the other. 
 
Download the CosmicTagger code from github here: 
https://github.com/coreyjadams/CosmicTagger.git 
 
The IO Layer of the CosmicTagger application is done with a custom, sparse 
IO framework called `larcv`.  This package may be downloaded from github: 
 
https://github.com/DeepLearnPhysics/larcv3.git 
 
larcv3 requires: 



• hdf5 
• cmake (build only) 
• scikit-build (python package, build only) 

 
Additionally, larcv uses pybind11, if you install from source please remember to run: 
 
git submodule update --init 

 
before building.  Build larcv with these instructions: 
 
python setup.py build -j 64 
python setup.py install 

 
 
Cosmic Tagger requires: 

• larcv3 (see above) 
• pytorch or tensorflow (your choice) 
• horovod (required for tensorflow, optional for pytorch) 
• hydra (for configuration) 

 

Installation Suggestion 
 
You may install and run everything however you please, including containers or any other 
method.  However, you may also follow these instructions to get a working build, using 
miniconda. 
 
# Load gcc and openmpi: 
module load gcc-9.2.0 
module load mpi 
 
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh 
bash Miniconda3-latest-Linux-x86_64.sh 
# Accept license agreements and select the  
# right install location, probably not your  
# home directory since disk quota is limited. 
#  
# Activate conda, if you skipped it's auto initialization 
source /path/to/your/conda/install/bin/activate 
 
# Turn on the conda base environment 
conda activate 
 
# Install pytorch 
conda install pytorch cudatoolkit=11.3 -c pytorch 



 
# Install build dependencies for larcv3: 
conda install cmake hdf5 scikit-build 
 
# Install Tensorflow: 
conda install cudnn -c nvidia 
pip install tensorflow-gpu 
# To run tensorflow with GPUs, make sure you add the conda lib directory to 
your LD_LIBRARY_PATH: 
 
# NOTE: if you don't install tensorflow, you need to pip install numpy! 
 
# Clone larcv and install it: 
git clone https://github.com/DeepLearnPhysics/larcv3.git 
cd larcv3 
git submodule update --init 
python setup.py build -j 64 
python setup.py install 
 
# Install mpi4py: 
pip install --force-reinstall mpi4py --no-cache-dir 
 
# Install horovod with tensorflow or if you want it with pytorch: 
pip install --force-reinstall horovod --no-cache-dir 

 
 
If you use `tensorflow` for this application, please note that `horovod` is also required.  
`horovod` is an optional dependency for `pytorch`. 
 
Finally, the configuration of CosmicTagger is with `hydra`: run `pip install --pre hydra-core` to 
install it. 
 
Please, contact the application expert for installation problems of larcv, 
tensorflow/pytorch, and other packages.  Software installation is not meant 
to be the challenging part of this application! 
 
The application in Tasks 2 through 4 are implicitly expecting a GPU accelerator.  If you do not 
have an accelerator, please add the following to all of your application launch commands: 
 
run.compute_mode=CPU 
 

Datasets 
 
The dataset for this competition comes in several pieces: 



• `cosmic_tagging_train.h5` is the train file 
• `cosmic_tagging_test.h5` is used for on-the-file testing, during training and for validation in 

Task 4. 
 
 
Additionally, you are provided two files for task4 if you choose to use them: pretrained weights 
for the network in either tensorflow or pytorch.  You may choose to use these, or you may 
choose to retrain a network and attempt to reach higher inference accuracy for a scoring bonus. 
 

 Scoring 
 
Each team will receive a score out of 100 for this application.  The score breakdowns are: 
• Task 1: 20 points (20%) 
• Task 2: 20 points (20%) 
• Task 3: 20 points (20%) 
• Task 4: 20 points (20%) 
• Available bonus points: 20 
 
The value you will report for each task is a measure of throughput for each task, since this is an 
image processing application.  Each task has been benchmarked on an independent HPC system 
(the details of which are not available until the completion of the competition).  Your score in 
each task will be the ratio of your measured throughput to the benchmarked throughput.  Each 
task will individually be curved/normalized, if necessary, to ensure the top ranking team does not 
exceed the total amount of points for that task. 
 
Task 4 has an additional bonus (or penalty) to your score based upon a scientific accuracy 
metric.  Task 4 will produced not just a throughput measurement but also a calculation of 
scientific accuracy of the metric, and your score will be the ratio of throughputs to the "secret" 
benchmark, scaled by the ratio of your precision.  More details are available in the description of 
Task 4. 
 

Score curving and normalization. 
 
Since there are bonus points available, and the points awarded are based upon a comparison to 
unknown but measured benchmarks, it may occur that one or more teams exceed the pre-
measured benchmark for a task.  In this scenario, two things happen: 
• The top-performing team's score becomes the new benchmark score to which everyone else's 

score is compared. 
• Every team that beat the unknown benchmark score receives a bonus of 4 points for each task 

that they exceed the unknown benchmark.  Bonus points are award after score normalization.  
You do not need to get first place to get bonus points - you only need to beat my benchmarks. 

 



In other words: your score for each task the ratio of your throughput to my measured throughput.  
If you beat me, you get bonus points.  If you beat everyone, you become the new benchmark and 
will automatically get the highest score on this task. 
 
If no one beats my benchmarks on any task, the highest possible score will be 80 out of 100.  My 
measurements are high but it is possible to beat them. 
 

Competition Tasks 
 
There are several tasks to accomplish for this application: 
 

1) IO Performance 
 

2) Distributed Training Scale Out (Small Images) 
 

3) Distributed Training Scale Out (Large Images, reduced precision) 
 

4) Inference Throughput (Accuracy Component.) 
 
Each task is explained in more detail below. 
 
PLEASE NOTE:  The network in this application is highly configurable from the command line, 
but for this competition configuration changes are not allowed except as specified for each task. 
 
What to submit 
 
In this competition you must submit two pieces of information: 

1) The log file from your run that you think is best 
2) The log directory for that task. 

 
For each task, you may configure where it stores the output directory directly from the command 
line, though it will also use a default location if none is provided. 
 
``` 
[rest of command] run.output_dir=path/to/your/output/location/choice 
``` 
 
You may run the application as many times as you like.  Submit for each task only once.  
Duplicate submissions will be ignored.  If you fail to submit a task at all, you will receive a score 
of 0 for that task.  The tasks - while closely related - can all be completed independently except 
for Task 1.  If you can not complete Task 1, you will not be able to complete the other 3 tasks. 
 

General Advice 
 



No task here is designed to take more than 1 hour to run, and all tasks can be completed faster 
than that.  Note that in each task, the `minibatch_size` is something you must decide upon.  The 
selected `minibatch_size` is for the entire program, and images will be divided amongts MPI 
ranks.  Therefore, ensure that ${MINIBATCH_SIZE} / ${N_RANKS} is an even division or 
there will be an error. 
 
Using a small `minibatch_size` will yield fast results for most tasks, but a larger `minibatch_size` 
may yield improved computational performance.  You will have to experiment. 
 
Tasks 1 and 2 use fp32 precision, while Task 3 uses mixed fp16 precision.  Task 4 can use which 
precision you like. 
 
Task 1: IO Performance 
 
The first challenge in this application isolates the IO component of CosmicTagger.  Run the 
application as follows: 
 
mpirun -n $RANKS [mpi arguments] python bin/exec.py run.id=task1 mode=iotest 
run.iterations=100 [run.minibatch_size=$MB] 

 
 
Here, you may configure the minibatch size to be as large as you please.  In IO mode, the 
application will read an image or more from file, load it into python as a numpy array, and 
immediately discard the data and load the next piece of data. 
 
Please note that the larcv package uses `std::futures` to overlap CPU-based IO communication 
with (typically) GPU-based Machine Learning computations.  Therefore the time spent in IO 
here may become up to 100% "invisible" in later tasks. 
 
Report your results from this challenge based on the text output of the application.  The final 
lines will look something like this: 
 
[timestamp] - INFO - Total IO Time: [your number here] 
[timestamp] - INFO - Total images read: [your selected batch size] 
[timestamp] - INFO - Average Image IO Throughput: [your throughput per batch] 

 
Your score here will be based upon the highest average IO throughput achieved, averaged over 
100 iterations.  You will have to experiment with the number of ranks to use, as well as the total 
number of images to use per batch.  Note that the total minibatch size selected will be divided 
amongst all ranks evenly.  The application will error if you select a  minibatch size not divisible 
by your number of ranks. 
 
Scoring: Task 1 is worth 20% of your total score.  Any team that beats my measured throughput 
receives 4 bonus points.  The highest of all measured throughputs (including my measurement) 
will be used to normalize scores into a range of 0 to 20, with bonus points added after 
normalization. 



 
 
Task 2: 
 
In Task 2, the objective is to perform distributed training.  To allow you to achieve a reasonable 
quality of result in a reasonable time, for this task the images in Task 3 are *downsampled* by a 
factor of 4 in both X and Y.  Task 3 is an MPI application, please launch your application similar 
to this: 
 
mpirun -n $N_RANKS [mpi arguments] python bin/exec.py \ 
--config-name SCC_21.yaml \ 
run.id=task2 \ 
run.iterations=1000 \ 
data.downsample=2 \ 
framework=[tensorflow | torch] \ 
run.minibatch_size=${MINIBATCH_SIZE} 

 
Here, you can use either tensorflow or pytorch by using `framework=tensorflow` or 
`framework=torch` as appropriate. 
 
The minibatch size used and the number of ranks used are left to your decision.   You must run 
for 1000 iterations and submit your output file and log directory. At the end of the run, you will 
see output that looks like this: 
 
[timestamp] - INFO - Total time to batch_process: [numeric_value] 
[timestamp] - INFO - Total time to batch process except first iteration: 
[numeric_value], throughput: [numeric_value] 
[timestamp] - INFO - Total time to batch process except first two iterations: 
[numeric_value], throughput: [numeric_value] 
[timestamp] - INFO - Total time to batch process last 40 iterations: 
[numeric_value], throughput: [numeric_value] 

 
Your score will be based on the value for throughput except first two iterations, so averaged over 
nearly the entire run.  Note that in this task, the accuracy of your network does not matter.  Task 
2 is work 20% of your total score. 
 
Scoring: Task 2 is worth 20% of your total score.  Any team that beats my measured throughput 
receives 4 bonus points.  The highest of all measured throughputs (including my measurement) 
will be used to normalize scores into a range of 0 to 20, with bonus points added after 
normalization. 
 
Task 3 
 
Task 3 is similar to Task 2 except for 2 distinct changes: 
- You will use the full resolution data, images of 3x1280x2048 
- You will train using reduced precision. 



 
Because of the increased datasize, you may need to reduce the minibatch size.  To be explicit, the 
command you run should look similar to this: 
 
mpirun -n $N_RANKS [mpi arguments] python bin/exec.py \ 
--config-name SCC_21.yaml \ 
run.id=task3 \ 
run.iterations=1000 \ 
data.downsample=0 \ 
run.precision=mixed \ 
framework=[tensorflow|torch] \ 
run.minibatch_size=${MINIBATCH_SIZE} 

 
As before, you will be scored based upon your average throughput in Images / second.  Your 
output file should once again look like this: 
 
[timestamp] - INFO - Total time to batch_process: [numeric_value] 
[timestamp] - INFO - Total time to batch process except first iteration: 
[numeric_value], throughput: [numeric_value] 
[timestamp] - INFO - Total time to batch process except first two iterations: 
[numeric_value], throughput: [numeric_value] 
[timestamp] - INFO - Total time to batch process last 40 iterations: 
[numeric_value], throughput: [numeric_value] 

 
Task 3 is worth 20% of your total score.  Any team that beats my measured throughput receives 
4 bonus points.  The highest of all measured throughputs (including my measurement) will be 
used to normalize scores into a range of 0 to 20, with bonus points added after normalization. 
 
Task 4 
 
Task 4 is the final task for this application.  In this task, you will run full resolution inference.  In 
this task, there is an additional constraint: the accuracy of your network matters.  For both 
tensorflow and pytorch, there are pre-trained weights available (based on the training of Task3, 
but run for longer).  You may download and use these weights if you like; you may also train the 
network to convergence if you like and try to exceed the scores of these weights.  It is also 
plausible that you can use the pre-trained weights as a very good starting point for further 
training. 
 
 
If you attempt to train further 
 
If you attempt to beat the scientific accuracy, you MUST submit your trained weights with your 
log files.  I WILL check that the accuracy you report is what the weights provided yield. 
 



If you attempt to train further, you are permitted to vary parameters in the `mode` section beyond 
the usual changes in the `run` section (minibatch size, iterations, etc): 
 
 
mode: 
  checkpoint_iteration........: 500 
  logging_iteration...........: 1 
  name........................: train 
  no_summary_images...........: False 
  optimizer: 
    gradient_accumulation.....: 1 
    learning_rate.............: 0.0003 
    loss_balance_scheme.......: light 
    name......................: adam 
  summary_iteration...........: 1 

 
Running Task 4 
 
Task 4 is not targeting a specific number of iterations, but instead is targeting a total amount of 
entries processed.  You must process at least 7000 individual entries, by ensuring that the 
product of your `minibatch_size` and `iterations` is more than 7000. Though there is a minimum 
requirement, you are still scored based on average throughput as before. 
 
You may run task 4 in whatever compute precision you would like to.  You may specify a 
location for weights to restore from using the parameter: 
 
mode.weights_location=${WEIGHTS} 

 
The images used must be full resolution (`data.downsample=0`) and be sure to use 
`mode=inference` instead of `mode=train`.  Otherwise, the command is the same as Task 3. 
 
 
In this case, your throughput will be scaled according to the `Average/mIoU` metric achieved.  
For example, if the throughput you achieve is 10 Images per second over the whole cluster and 
my measurement is 15, and the mIoU on average is 0.5 while the provided weights should 
achieve 0.75, your score will be calculated as (0.5/0.75)x(10/15).  If you exceed my pretrained 
network's accuracy, you do not get a scaled score but rather your throughput is used as-is, and 
you get a flat bonus points award. 
 
To summarize, a Figure of Merit for Task 4 is: 
 
``` 
FOM = [min(your_accuracy, my_accuracy) / my_accuracy ] * [ your_throughput / 
best_throughput] 
``` 
 



The metric values that you should meet or beat are not disclosed here - you can discover them by 
running inference using the provided weights. 
 
Task 4 is worth 20 points.  Any team that beats my measured figure of merit receives 4 bonus 
points.  The highest of all measured throughputs (including my measurement) will be used to 
normalize scores into a range of 0 to 20, with bonus points added after normalization. 
 
Any team that beats my accuracy by at least 0.02 receives the final 4 bonus points.  Unlike 
throughput, there is no renormalization across teams according to scientific accuracy - everyone 
competes against my pre-trained networks. 


